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Abstract

We propose a pixel similarity-based algorithm enabling
accurate rigid registration between single and multimodal
images presenting gross dissimilarities due to noise, miss-
ing data or outlying measures. The method relies on the
partitioning of a reference image by a Student’s t-mixture
model (SMM). This partition is then projected onto the im-
age to be registered. The main idea is that a t-component in
the reference image corresponds to a t-component in the im-
age to be registered. If the images are correctly registered
the weighted sum of distances between the corresponding
components is minimized. The use of SMM components is
justified by the property that they have heavier tails than
standard Gaussians, thus providing robustness to outliers.
Experimental results indicate that, even in the case of im-
ages presenting low SNR or important amount of dissimilar-
ities due to temporal changes, the proposed algorithm com-
pares favorably to the histogram-based mutual information
method that is widely used in a variety of applications.

1. Introduction

The goal of image registration is to geometrically align
two or more images in order to superimpose pixels repre-
senting the same underlying structure. Image registration
is an important preliminary step in many application fields
involving, for instance, the detection of changes in tempo-
ral image sequences or the fusion of multimodal images.
For the state of the art of registration methods we refer the
reader to [29]. Medical imaging, with its wide variety of
sensors (MRI, nuclear, ultrasonic, X-Ray) is probably one
of the first application fields [18, 1, 9]. Other research areas
related to image registration are remote sensing, multisen-
sor robot vision and multisource imaging used in the preser-
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vation of artistic patrimony. Respective applications include
the following of the evolution of pathologies in medical im-
age sequences [22], the detection of changes in urban de-
velopment from aerial photographs [14] and the recovery
of underpaintings from visible/X-ray pairs of images in fine
arts painting analysis [10].

The overwhelming majority of change detection or data
fusion algorithms assume that the images to be compared
are perfectly registered. Even slightly erroneous registra-
tions may become an important source of interpretation er-
rors when inter-image changes have to be detected. Accu-
rate (i.e. subpixel or subvoxel) registration of single modal
images remains an intricate problem when gross dissimi-
larities are observed. The problem is even more difficult
for multimodal images, showing both localized changes that
have to be detected and an overall difference due to the va-
riety of responses by multiple sensors.

Since the seminal works of Viola and Wells [28] and
Maes et al. [17], the maximization of the mutual infor-
mation measure between a pair of images has gained an
increasing popularity as a criterion for image registration
[24]. The estimation of both marginal and joint probability
density functions of the involved images is a key element
in mutual information based image alignment. However,
this method is limited by the histogram binning problem.
Approaches to overcome this limitation include Parzen win-
dowing [28, 13], where we have the problem of kernel width
specification, and spline approximation [27, 19]. A recently
proposed method relies on the continuous representation of
the image function and develops a relation between image
intensities and image gradients along the level sets of the
respective intensity [25].

Gaussian mixture modeling (GMM) [4, 20] constitutes
a powerful and flexible method for probabilistic data clus-
tering that is based on the assumption that the data of each
cluster has been generated by the same Gaussian compo-
nent. In [16], GMMs were trained off-line to provide prior
information on the expected joint histogram when the im-
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ages are correctly registered. GMMs have also been suc-
cessfully used as models for the joint [8] as well as the
marginal image densities [11], in order to perform intensity
correction. They have also been applied in the registration
of point sets [15] without establishing explicit correspon-
dence between points in the two images. The parameters
of GMMs can be estimated very efficiently through maxi-
mum likelihood (ML) estimation using the EM algorithm
[8]. Furthermore, it is well-known that GMMs are capable
of modeling any pdf [20].

An important issue in image registration is the existence
of outlying data due to temporal changes (e.g. urban de-
velopment in satellite images, lesion evolution in medical
images) or even the complimentary but non redundant in-
formation in pairs of multimodal images (e.g. visible and
infrared data, functional and anatomical medical images).
Although a large variety of image registration methods have
been proposed in the literature only a few techniques ad-
dress these cases [12, 22, 26].

The method proposed in this study is based on mixture
model training. More specifically, we train a mixture model
once for the reference image and obtain the corresponding
partitioning of image pixels into clusters. Each cluster is
represented by the parameters of the corresponding density
component. The main idea is that a component in the ref-
erence image corresponds to a component in the image to
be registered. If the images are correctly registered the sum
of distances between the corresponding components is min-
imum.

A straightforward implementation of the above idea
would consider models with Gaussian components. How-
ever, it is well known that GMMs are sensitive to outliers
and may lead to excessive sensitivity to small numbers of
data points. This is easily understood by recalling that
maximization of the likelihood function under an assumed
Gaussian distribution is equivalent to finding the least-
squares solution which lacks robustness. Consequently, a
GMM tends to over-estimate the number of clusters since it
uses additional components to capture the tails of the dis-
tributions [3]. The problem of attaining robustness against
outliers in multivariate data is difficult and increases with
the dimensionality. In this paper, we consider mixture mod-
els (SMM) with Student’s-t components for image regis-
tration. This pdf has heavier tails compared to a Gaussian
[23]. More specifically, each component in the SMM mix-
ture originates from a wider class of elliptically symmetric
distributions with an additional parameter called the number
of degrees of freedom. In this way, a more robust mixture
model is employed than the typical GMM.

The main contributions of the proposed registration
method are the following: (i) the histogram binning prob-
lem is overcome through image modeling with mixtures
of distributions which provide a continuous representation

of image density. (ii) Robustness to outlying pixel values
is achieved by using mixtures of Student’s t-distributions.
The widely used method of maximization of the mutual in-
formation is outperformed. (iii) The method may be di-
rectly applied to vector valued images (e.g. diffusion ten-
sor MRI) where standard histogram-based method fail due
to the curse of dimensionality. (iv) The proposed method
is faster than histogram based methods where the joint his-
togram needs to be computed at every change in the trans-
formation parameters.

The remainder of this paper is organized as follows. In
section 2, we present our image registration method for gen-
eral mixture models. ML estimation of the parameters of a
Student’s t-mixture model and implementation issues of the
proposed registration algorithm using SMMs are described
in section 3. Experimental results and comparison with the
state of the art registration method of maximization of the
mutual information (MI) are provided in section 4, while
conclusions are drawn in section 5.

2. Image registration by minimization of the
distance between mixture models

Let Iref be an image of N×N pixels with intensities de-
noted as Iref (xi), where xi, i = 1, ..., N2, is the ith pixel.
The purpose of rigid image registration is to estimate a set
of parameters S of the rigid transformation TS minimizing
a cost function E(Iref (·), Ireg(TS(·))) that, in a similarity
metric-based context, expresses the similarity between the
image pair. In the 2D case the rigid transformation para-
meters are the rotation angle and the translation parameters
along the two axes. In the 3D case, there are three rotation
and three translation parameters. Eventually, scale factors
may also be included, depending on the definition of the
transformation.

Consider, now, a partitioning of the reference image Iref

into K clusters (groups) by training a mixture model with
K components with arbitrary pdf g(I(x);Θ):

φ(Iref (x)) =
K∑

k=1

πkp(Iref (x);Θref
k )

Therefore, the reference image is represented by the para-
meters Θref

k , k = 1, . . . , K of the mixture components.
The partitioning of the image is described using the function
f(x) : [1, 2, ..., N ] × [1, 2, ..., N ] → {1, 2, ...,K}, where
f(x) = k means that pixel x of the reference image Iref

belongs to the cluster defined by the kth component. Let us
also define the sets of all pixels of image Iref belonging to
the kth cluster:

Pk = {xi ∈ Iref , i = 1, 2, ..., N2/δ(f(xi) − k) = 1, }



for k = 1, ..., K, where δ(x) is the Dirac function:

δ(f(xi) − k) =
{

1, if f(xi) = k
0, otherwise

(1)

The above mixture-based segmentation of the reference
image is performed once, at the beginning of the registration
procedure. The reference image Iref is, thus, partitioned
into K groups, generally, not corresponding to connected
components in the image. This spatial partition is projected
on the image to be registered Ireg , yielding the same parti-
tion of this second image (i.e., the partitioning of the refer-
ence image acts as a mask on the image to be registered).
Then, we assume that the pixel values of each cluster k in
Ireg are modeled using a mixture component with parame-
ters Θreg

k obtained from the statistics of the intensities of
pixels in group k.

In order to apply our method it should be possible to de-
fine a distance measure D(Θref

k , Θreg
k ) between the corre-

sponding mixture components with pdf p(I). Then the en-
ergy function we propose, is expressed by the weighted sum
of distances between the corresponding components in Ireg

and Iref :

E(Iref (·), Ireg(TS(·))) =
K∑

k=1

πkD(Θref
k , Θreg

k ) (2)

where πk is the mixing proportion of the kth component:

πk =
|Pk|

K∑
l=1

|Pl|

where |Pk| denotes the cardinality of set Pk. If the two
images are correctly registered the criterion in (2) assumes
that the total distance between the whole set of components
would be minimum.

For a given set of transformation parameters S, the to-
tal energy between the image pair is computed through the
following steps:

• segment the reference image Iref (·) into K clusters by
a mixture model.

• for each cluster k = 1, 2, ..., K of the reference image:

– project the pixels of the cluster onto the trans-
formed image to be registered Ireg(TS(·)).

– determine the parameters Θreg
k of the projected

partition of Ireg .

• evaluate the energy in eq. (2) by computing the dis-
tances between the corresponding densities.

For example it is straightforward to apply the above reg-
istration procedure in the case of GMMs. Consider the mul-
tivariate normal distributions N1(μ1,Σ1) and N2(μ2, Σ2)
and denote Θi = {μi, Σi}, with i = {1, 2}, their respec-
tive parameters (mean vector and covariance matrix). The
Chernoff distance between these distributions is defined as
[7]:

C(Θ1,Θ2, s) =
s(1 − s)

2
ΔμT [sΣ1 + (1 − s)Σ2]−1Δμ

+
1
2

ln
( |sΣ1 + (1 − s)Σ2|

|Σ1|s|Σ2|1−s

)
,

where Δμ = μ2 − μ1. The Bhattacharyya distance is a
special case of the Chernoff distance with s = 0.5:

B(Θ1, Θ2) =
1
8
ΔμT

[
Σ1 + Σ2

2

]−1

Δμ

+
1
2

ln

(
|Σ1+Σ2

2 |√|Σ1||Σ2|

)

A representative GMM for the reference image can be
obtained via the EM algorithm [4]. Therefore, the ref-
erence image is represented by the parameters Θref

k =
{μref

k , Σref
k }, k = 1, . . . , K of the GMM components. Af-

ter projecting the pixel groups of the reference image to ob-
tain the corresponding groups in the registered image, it is
easy to compute the parameters Θreg

k by taking the sample
mean μreg

k and the sample covariance matrix Σreg
k :

μreg
k =

1
|Pk|

N2∑
i=1

Ireg(TS(xi))δ(f(xi) − k) (3)

and

Σreg
k =

1
|Pk|

N2∑
i=1

(ΔIi
k)(ΔIi

k)T δ(f(xi) − k), (4)

where ΔIi
k = Ireg(TS(xi))−μreg

k . The role of δ(f(xi)−k)
in eq. (3) and (4) is to determine the support (the pixel co-
ordinates) for the calculation of the mean and covariance.
These parameters are computed on the image to be regis-
tered for the pixel coordinates belonging to the kth class
on the reference image. This also implies a Gaussian gen-
erative model for the components of Ireg . The total dis-
tance between the two images is computed using eq. (2),
where the Bhattacharyya distance between the correspond-
ing Gaussian components is considered as distance measure
D.

However, in order to overcome the drawbacks of GMMs
concerning outlying image data, we have employed in our
registration method mixtures of Student’s t-distributions as
described in the next section.



3. Robust image registration with mixtures of
Student’s t-distributions

In what follows, we briefly present the properties of mix-
tures of t-distributions (SMMs), as well as ML estimation of
their parameters using the EM algorithm. Then, we describe
how SMMs can be employed as mixture models in the the
general registration approach presented in the previous sec-
tion.

3.1. ML estimation of mixtures of Student’s t-
distributions

A d-dimensional random variable X follows a multivari-
ate t-distribution with mean μ, positive definite, symmetric
and real d × d covariance matrix Σ and has ν ∈ [0,∞)
degrees of freedom when, given the weight u, the variable
X has the multivariate normal distribution with mean μ and
covariance Σ/u:

X|μ, Σ, ν, u ∼ N(μ, Σ/u),

and the weight u follows a Gamma distribution parameter-
ized by ν:

u ∼ Gamma(ν/2, ν/2).

Integrating out the weights from the joint density leads to
the density function of the marginal distribution:

p(x;μ, Σ, ν) =
Γ

(
ν+d

2

) |Σ|− 1
2

(πν)
d
2 Γ

(
ν
2

)
[1 + ν−1δ(x, μ; Σ)]

ν+d
2

(5)

where δ(x, μ; Σ) = (x−μ)T Σ−1(x−μ) is the Mahalanobis
squared distance and Γ is the Gamma function. It can be
shown that for ν → ∞ the Student’s t-distribution tends to
a Gaussian distribution with covariance Σ. Also, if ν > 1,
μ is the mean of X and if ν > 2, ν(ν−2)−1Σ is the covari-
ance matrix of X . Therefore, the family of t-distributions
provides a heavy-tailed alternative to the normal family with
mean μ and covariance matrix that is equal to a scalar mul-
tiple of Σ, if ν > 2 (fig. 1).

A Student’s t-distribution mixture model (SMM) may
also be trained using the EM algorithm [23]. A K-
component mixture of t-distributions is given by

φ(x,Ψ) =
K∑

i=1

πip(x; μi,Σi, νi) (6)

where x = (x1, ..., xN )T denotes the observed-data vector
and

Ψ = (π1, ..., πK , μ1, ..., μK ,Σ1, ..., ΣK , ν1, ..., νK)T .
(7)

are the parameters of the components of the mixture.

Figure 1. The Student’s t-distribution for various degrees of free-
dom. As ν → ∞ the distribution tends to a Gaussian. For small
values of ν the distribution has heavier tails than a Gaussian.

Consider now the complete data vector

xc = (x1, ...xN , z1, ..., zN , u1, ..., uN )T (8)

where z1, ..., zN are the component-label vectors and zij =
(zj)i is either one or zero, according to whether the ob-
servation xj is generated or not by the ith component. In
the light of the definition of the t-distribution, it is conve-
nient to view that the observed data augmented by the zj ,
j = 1, ..., N are still incomplete because the component co-
variance matrices depend on the degrees of freedom. This
is the reason that the complete-data vector also includes the
additional missing data u1, ..., uN . Thus, the E-step on the
(t + 1)th iteration of the EM algorithm requires the calcu-
lation of the posterior probability that the datum xj belongs
to the ith component of the mixture:

zt+1
ij =

πt
ip(xj ;μt

i, Σ
t
i, ν

t
i )

K∑
m=1

p(xj ; μt
m, Σt

m, νt
m)

(9)

as well as the expectation of the weights for each observa-
tion:

ut+1
ij =

νt
i + d

νt
i + δ(xj , μt

i; Σ
t
i)

(10)

Maximizing the log-likelihood of the complete data pro-
vides the update equations of the respective mixture model
parameters:

πt+1
i =

1
N

N∑
j=1

zt
ij , μt+1

i =

N∑
j=1

zt
iju

t
ijxj

N∑
j=1

zt
iju

t
ij

, (11)



Σt+1
i =

N∑
j=1

zt
iju

t
ij(xj − μt+1

i )(xj − μt+1
i )T

N∑
j=1

zt+1
ij

. (12)

The degrees of freedom for each component are computed
as the solution to the equation:

log
(

νt+1
i

2

)
− ψ

(
νt+1

i

2

)
+ 1 − log

(
νt

i + d

2

)
+

+

N∑
j=1

zt
ij(log ut

ij − ut
ij)

N∑
j=1

zt
ij

+ ψ

(
νt

i + d

2

)
= 0 (13)

where ψ(x) = ∂(lnΓ(x))
∂x is the digamma function. A

detailed derivation of the EM algorithm for Student’s t-
mixtures is presented in [23].

3.2. Implementation

The Student’s t-distribution is a heavy tailed approxima-
tion to the Gaussian. It is therefore, natural to consider the
mean and covariance of the SMM components to approxi-
mate the parameters of a GMM on the same data as it was
described in the previous section. If the images follow a
Gaussian model, the degrees of freedom νi are relatively
large and the SMM tends to be a GMM with the same pa-
rameters. If the images contain outliers, parameters νi are
weak and the mean and covariance of the data are appropri-
ately weighted in order not to take into account the outliers.
Thus, the parameters of the SMM, computed on the refer-
ence image Iref , are used as component parameters Θref

k in
a straightforward way as they generalize the Gaussian case
by correctly addressing the outliers problem. After projec-
tion of the pixel groups of the reference image to their cor-
responding groups in the registered image, the parameters
Θreg

k are computed using the sample mean (3) and the sam-
ple covariance matrix (4).

The Iterated Conditional Modes (ICM) [2] algorithm
was implemented for the minimization of the energy func-
tion as (2) is highly non-linear. ICM is a determinis-
tic Gauss-Seidel like algorithm, that only accepts config-
urations decreasing the cost function and has fast conver-
gence properties.If good initialization is provided, Powell’s
method also converges fast to the correct solution without
having to compute derivatives of the objective function (2)
with respect to the transformation parameters.

A large number of interpolations are involved in the reg-
istration process. The accuracy of the rotation and transla-
tion parameter estimates is directly related to the accuracy

of the underlying interpolation model. Simple approaches
such as the nearest neighbor interpolation are commonly
used because they are fast and simple to implement, though
they produce images with noticeable artifacts. More satis-
factory results can be obtained by small-kernel cubic con-
volution techniques. In our experiments, we have applied a
bilinear interpolation scheme, thus preserving the quality of
the image to be registered.

Finally, let us notice that the energy in (2) may be ap-
plied to both single and multimodal image registration. In
the latter case, the difference in the mean values of the dis-
tributions in (2) should be ignored, as we do not search to
match the corresponding Student’s t-distributions in posi-
tion but only in shape as the correspondence in position is
established by the projection step. This also stands for the
single modal case if the intensities of the image pair have
significantly different contrasts.

4. Experimental results

In order to evaluate the proposed method, we have per-
formed a number of experiments in some relatively difficult
registration problems. Registration errors were computed in
terms of pixels and not in terms of transformation parame-
ters. Registration accuracies in terms of rotation angles and
translation vectors are not easily evaluated due to parame-
ter coupling. Therefore, the registration errors are defined
as deviations of the corners of the registered image with re-
spect to the ground truth position. Let us notice that these
registration errors are less forgiving at the corners of the im-
age (where their values are larger) with regard to the center
of the image frame.

At first, we have applied our method to the registration
of a piecewise constant image with three distinct regions
to its noisy and rigidly transformed counterpart. Know-
ing the number of mixture components allows better eval-
uation of the method with respect to noise. The image in
fig. 2(a) was degraded by uniformly distributed noise in
order to achieve various SNR values between 8.5 dB and
3.2 dB by appropriately varying the standard deviation of
the noise. An example is shown in fig. 2(b). The degraded
images underwent several rigid transformations by rotation
angles varying between [−45, 45] degrees and translation
parameters between [−10, 10] pixels. To investigate the ro-
bustness the proposed method to outliers we have applied
the algorithm with K = 3 components considering both
GMMs and SMMs. Figure 3 illustrates the average regis-
tration errors for the different SNR values. For each SNR,
10 different transformations were applied to the image and
the average value of the registration error is presented. For
comparison purposes, the performance of the MI method
is also shown. As it can be observed, both the GMM and
the SMM-based registration methods outperform the MI
which fails when the SNR is low. Moreover, the heavier



(a) (b)

Figure 2. (a) A three-class piecewise constant image with intensity
values 30, 125 and 220. (b) The image degraded by zero mean
uniform noise in order to achieve a SNR of 3.2 dB.

Figure 3. Mean registration error versus signal to noise ratio
(SNR) for the 3-class registration experiment of figure 2.

tailed SMM demonstrates better performance for consider-
able amounts of noise. When the SNR is higher than 8 dB,
all methods provide correct registrations.

The proposed registration method was also tested on
multimodal image pairs such as the MRI/SPECT case in
fig. 4 and the cell images in fig. 5. The complimen-
tary but not redundant information carried by the multi-
modal images increases the difficulty of the registration
process. In both experiments we have applied 25 rigid trans-
formations to one of the images with rotation angles vary-
ing between [−45, 45] degrees and translation parameters
between [−20, 20] pixels. The experiments were realized
with the number of components being K = 2, ..., 10 and
K = 16. Table 1 summarizes the statistics on the registra-
tion errors for the number of components that provided the
better performances. These values are K = 5 in the case of
MRI/SPECT and K = 6 for the cell images. As it can be
observed, the SMM method achieves sub-pixel accuracy in
all cases.

A last experiment demonstrating the performance of the

(a) (b)

Figure 4. (a) A slice of a brain MR image and (b) its SPECT
counterpart used in our experiments. Notice the important diffu-
sion present in the SPECT image.

(a) (b)

Figure 5. A pair of NIH 3T3 electron microscope images (400x
magnification) of rat cells under (a) normal and (b) fluorescent
light.

SMM Registration errors - Multimodal images
MRI/SPECT Cell images

Mean 0.50 0.27
St. dev. 0.47 0.11
Median 0.55 0.32
Min 0.07 0.08
Max 1.92 1.06

Table 1. Statistics on the registration errors for the images in fig.
4 and 5. The errors are expressed in pixels. The number of SMM
components is K = 5 for the brain and K = 6 for the cell images.

proposed SMM method to deal with outliers is the registra-
tion of a remotely sensed image pair. The meteorological
images of Europe in fig. 6 were acquired at different dates.
The image in fig. 6(b) underwent 25 rigid transformation
with values of rotation angle uniformly sampled in the in-
terval [−45, 45] degrees and translations between [−10, 10]
pixels. The experiments were realized with the number of
components being K = 2, ..., 10 and K = 16. For the MI
case, where K is the number of histogram bins, the values
of K = {128, 256} were also used in order to have the best
possible performance. The large amount of clouds at dif-
ferent locations in the image pair introduce difficulties in
the registration procedure. It is worth commenting that the
MI method failed to register the images and systematically
provided registration errors of the order of 7 to 10 pixels.
This is true even for a large numbers of histogram bins. The
SMM method produced very small registration errors which
are summarized in table 2.



(a)

(b)
Figure 6. (a) Image of Europe on 8 January 2007 at 01h00, pro-
vided by MeteoSat. (b) Image of Europe on 9 January 2007 at
01h00, provided by MeteoSat (by courtesy of Meteo-France). No-
tice the large amount of outliers (cloudy regions in different lo-
cations in the image pair) introducing important difficulties in the
registration process.

Registration errors - Satellite images
MI SMM

Mean 7.12 0.88
St. dev. 2.66 0.63
Median 6.40 0.67
Min 3.61 0.21
Max 11.37 1.69

Table 2. Statistics on the registration errors for the images in fig.
6. The errors are expressed in pixels. Notice that the MI failed to
correctly register the images.

5. Conclusion

We have presented a method for the registration of sin-
gle and multimodal images. The method relies on the min-
imization of distances between probability density func-
tions defined by partitioning the two images. The first im-
age is partitioned by a SMM through the EM algorithm.
This partition is then implied onto the second image. We
have shown the effectiveness and accuracy of the proposed
method especially with images presenting dissimilarities,
such as the remotely sensed image pair, where the mu-
tual information method fails to correctly register the two
images. Vector valued (RGB, textured or multispectral)

images are expected to benefit from this registration tech-
nique where the employment of high-dimensional joint his-
tograms makes the use of standard methods prohibitive.

Let us also notice that Student’s t-mixtures overcome the
binning problem of histogram-based methods and provide a
continuous model of the image density. When successfully
trained, they produce a sensible approximation of the pdf
of the image intensity, by placing density components in a
sensible data-driven way (i.e on intensity regions exhibiting
high density). Although there is still the problem of spec-
ifying the number of components in finite mixture model-
ing, our experimental results indicated that our SMM-based
method is robust from this point of view, provided that the
number of components is neither very big (overfitting) nor
very small (underfitting).

Important open questions for mixture-based registration
are how the number of model components can be selected
automatically [5] and which features, apart from image in-
tensity, should be used [6]. Moreover, the generalization
of the proposed method to the registration of scattered data
[15, 21] is a perspective of our study. The difficulty in that
case consists in establishing the correspondences between
the components of the mixture between the two point sets
[15].
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